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We began to talk about the calculus of variations.  The calculus of variations is used to 
find extremum values of integral functionals.  An example is a calculation of the shortest 
distance between two points in a plane.  One can write the distance in terms of an integral 
over the path from the designated starting point (𝑥1,𝑦1) to the designated end point (𝑥2,𝑦2) 
as 𝐿 = ∫ 𝑑𝑠2

1 = ∫ �𝑑𝑥2 + 𝑑𝑦22
1 .  If we (arbitrarily) treat the 𝑥 coordinate as the independent 

variable we can write the integral as 𝐿 = ∫ �1 + (𝑦′)2 𝑑𝑥𝑥2
𝑥1

, where we have written (𝑑𝑦/

𝑑𝑥)2 as (𝑦′)2.  Our objective is to find the path 𝑦(𝑥) that minimizes this integral.  This is a 
problem in the calculus of variations. 

A second example is Fermat’s principle.  This is the problem of how light rays propagate 
from point 1 to point 2 through a variable dielectric medium characterized by an index of 
refraction that varies with position in a plane as 𝑛(𝑥,𝑦).  The light moves with variable speed 
𝑣 = 𝑐/𝑛(𝑥,𝑦).  Fermat’s principle says that light will take the path that minimizes the time 
to travel between the two points: 𝑡𝑖𝑚𝑒(1 → 2) = 1

𝑐 ∫ 𝑛(𝑥, 𝑦)�1 + (𝑦′)2 𝑑𝑥𝑥2
𝑥1

.  Again we 

need to find the path 𝑦(𝑥) that minimizes this integral.  This is another problem in the 
calculus of variations. 

The Euler-Lagrange equation is derived by assuming that there is an infinite family of 
“wrong” trajectories between points 1 and 2 parameterized by the function 𝜂(𝑥) and the 
constant 𝛼 as 𝑌(𝑥) = 𝑦(𝑥) + 𝛼𝜂(𝑥).  The objective is to minimize the integral 𝑆 =
∫ 𝑓[𝑦(𝑥),𝑦′(𝑥),𝑥] 𝑑𝑥𝑥2
𝑥1

, and this will be accomplished by taking 𝑑𝑆/𝑑𝛼 and setting it equal 

to zero.  The result, after integrating by parts, is that the following expression must be 

satisfied for all points 𝑥1 ≤ 𝑥 ≤ 𝑥2:  𝜕𝑓
𝜕𝑦
− 𝑑

𝑑𝑥
𝜕𝑓
𝜕𝑦′

= 0, called the Euler-Lagrange equation. 

Going back to the shortest-distance-in-a-plane problem, we see that the function 𝑓 in this 
case is 𝑓 = �1 + (𝑦′)2.  In this case 𝑓 does not depend explicitly on𝑦, hence we can write 
𝜕𝑓
𝜕𝑦′

= 𝑦′
�1+(𝑦′)2

= 𝐶, a constant.  This can be reduced to 𝑦′(𝑥) = 𝑚, where 𝑚 is another 

constant.  Integrating both sides with respect to 𝑥, we find 𝑦(𝑥) = 𝑚𝑥 + 𝑏, which is the 
famous equation for a straight line. The Fermat’s principle problem can be solved in a similar 
way once the index of refraction distribution 𝑛(𝑥,𝑦), and the end points, are specified. 

We then did the example of the Brachistochrone problem.  A particle falls from rest 
under the influence of gravity following a frictionless track to a final location.  The question 
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is: what track design will get the particle to the final location in the shortest time?  The 
particle starts at the origin (x=0, y=0) and falls to a point (x2, y2), with x2 > 0 and y2 > 0 (note 
that positive y is in the ‘down’ direction).  The time to travel is given by 𝑇𝑖𝑚𝑒(1 → 2) =

∫ 𝑑𝑡2
1 = ∫ 𝑑𝑠

𝑣
2
1 = ∫ �𝑑𝑥2+𝑑𝑦2

𝑣
2
1 .  The speed is found from conservation of energy: 𝑣 = �2𝑔𝑦, 

leading to 𝑇𝑖𝑚𝑒(1 → 2) = 1
�2𝑔

∫
�1+(𝑥′)2

√𝑦
𝑑𝑦𝑦2

0 , where we are using the y-coordinate of the 

particle as the independent variable and 𝑥′ = 𝑑𝑥/𝑑𝑦.  We are now looking for the trajectory 
𝑥(𝑦) that minimizes the time 𝑇𝑖𝑚𝑒(1 → 2).  This integral will be made stationary when the 

integrand 𝑓(𝑥, 𝑥′,𝑦) obeys the Euler-Lagrange equation, which in this case is: 𝜕𝑓
𝜕𝑥
− 𝑑

𝑑𝑦
𝜕𝑓
𝜕𝑥′

=

0.  The result is a differential equation for 𝑥(𝑦): 𝑥′ = �
𝑦

2𝑎−𝑦
, where 𝑎 is a constant 

introduced from the Euler-Lagrange equation.  We can integrate this equation with the 
change of variables 𝑦 = 𝑎(1 − cos𝜃), yielding 𝑥 = 𝑎(𝜃 − sin𝜃) + 𝐶.  This describes a 
cycloid curve (our cycloid is an upside-down version of the one on this web site).  The 
particle making the shortest-time fall will follow the cycloid trajectory. 

In general, it is not always possible to parameterize the trajectory of a particle with a 
simple one-to-one functional relationship such as 𝑦(𝑥) or 𝑥(𝑦).  In this case one would like 
to parameterize the trajectory with functions such as (𝑥(𝑢),𝑦(𝑢)), where 𝑢 acts as the 
parameter.  The Euler-Lagrange equation can be generalized to handle this situation.  
Consider the integral 𝑆 = ∫ 𝑓[𝑥(𝑢),𝑥′(𝑢),𝑦(𝑢),𝑦′(𝑢),𝑢]𝑑𝑢𝑢2

𝑢1
.  To make it stationary will 

yield two Euler-Lagrange equations: 𝜕𝑓
𝜕𝑥
− 𝑑

𝑑𝑢
𝜕𝑓
𝜕𝑥′

= 0 and 𝜕𝑓
𝜕𝑦
− 𝑑

𝑑𝑢
𝜕𝑓
𝜕𝑦′

= 0.   

We then showed that Newton’s second law of motion can be re-stated as a set of Euler-
Lagrange equations for an integrand known as the Lagrangian ℒ = 𝑇 − 𝑈, where 𝑇 is the 
kinetic energy and 𝑈 is the potential energy.  The integral that is made stationary is called the 
action: 𝑆 = ∫ℒ 𝑑𝑡.  Hamilton’s principle states that the actual motion of the particle will be 
the one that leaves this integral stationary.  The Lagrangian can be written in terms of any set 
of unique (generalized) coordinates (𝑞1,𝑞2, 𝑞3).  One can define a generalized force as 𝜕ℒ

𝜕𝑞𝑖
, 

and the generalized momentum as 𝜕ℒ
𝜕𝑞𝑖′

.  They are related through the Euler-Lagrange 

equation as “generalized force” = time rate of change of “generalized momentum”.  Note that 
these generalized quantities do not necessarily have the dimensions of force or momentum!   

Feynman’s path integral formulation of quantum mechanics considers all possible 
trajectories between the initial point and the final point.  One calculates a transition 
amplitude as a sum over all trajectories of a weighting function.  The weight of each 
trajectory is given the same magnitude, but a variable phase, as 𝑒𝑖𝑆/ℏ, where 𝑆 is the action 
for that trajectory and ℏ is Planck’s constant divided by 2𝜋, which is sometimes known as 

http://en.wikipedia.org/wiki/Cycloid
http://en.wikipedia.org/wiki/Cycloid
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the quantum of action.  This is a generalization of Hamilton’s principle, which of course 
specifies only a single classical trajectory. 

 

 


